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We develop a dynamical–statistical downscaling approach by coupling the PRECIS regional
modelling system and a statistical method – SCADS – to construct very high resolution
climate projections for studying climate change impacts at local scales. The coupled
approach performs very well in hindcasting the mean temperature of present-day climate,
while the performance for precipitation is relatively poor due to its high spatial variability
and nonlinear nature but its spatial patterns are well captured. We then apply the coupled
approach for projecting the future climate over the province of Ontario, Canada at a fine
resolution of 10 km. The results show that there would be a significant warming trend
throughout this century for the entire province while less precipitation is projected for
most of the selected weather stations. The projections also demonstrate apparent spatial
variability in the amount of precipitation but no noticeable changes are found in the spatial
patterns.
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1. Introduction

Global climate models (GCMs) are widely used to project future
climate under the Special Report on Emissions Scenarios (SRES;
Nakićenović, 2000) or the representative concentration pathways
(Van Vuuren et al., 2011). Generally, GCMs run at the global scale
with a coarse resolution of 150–300 km. Assessment of climate
change impacts at regional scales usually requires future climate
projections at a much finer resolution (in the order of 10 km).
Over recent years, downscaling techniques have been developed
in the climate research community (e.g. Semenov and Barrow,
1997; Wilby et al., 2002; Jones, 2004; Pal et al., 2007; Hessami
et al., 2008), with the purpose of bridging the gap in the spatial
resolution between GCMs and impact models (e.g. for hydrology
and agriculture).

The downscaling techniques are classified into two categories:
dynamical downscaling and statistical downscaling (Hewitson
and Crane, 1996). Dynamical downscaling is a nested regional
climate modeling technique which usually consists of using initial
conditions, time-dependent lateral meteorological conditions and
surface boundary conditions derived from GCMs or reanalysis of
observations to drive high-resolution regional climate models
(RCMs; Giorgi et al., 2001). RCMs are developed using the
same laws of physics as described in GCMs to account for
the sub-GCM grid-scale processes with more details (such as

mountain ranges, coastal zones, and details of soil properties)
in a physically based way (Feser et al., 2011). Nesting RCMs
into GCMs can lead to improved simulation of the general
circulation and thus can provide projections for a variety
of climate variables at fine spatial scales (Zhang et al., 2006;
Lavender and Walsh, 2011; White et al., 2013; Wang et al.,
2014). The major challenge to the dynamical technique is that
RCM simulations can be computationally expensive in practice,
depending on the domain size, spatial resolution, as well as the
simulation length. In comparison, statistical downscaling mainly
involves the development of quantitative relationships between
large-scale atmospheric variables (named predictors) and local
surface variables such as temperature and precipitation (named
predictands); this approach is easier to implement with much
lower computation requirements (Wilby et al., 2004). A large
number of previous research practices have employed statistical
techniques to assess climate change impacts at either point or
catchment scales (e.g. Charles et al., 2004; Fowler et al., 2007;
Timbal et al., 2009; Mullan et al., 2012). Nevertheless, statistical
downscaling is subject to an unverifiable assumption that the
statistical relationships developed for present-day climate should
hold under different future climate forcing conditions.

Both dynamical and statistical downscaling techniques have
their own advantages for generating fine-resolution climate
projections at regional scales. However, previous studies have
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Figure 1. Illustration of the coupled dynamical–statistical downscaling approach used in this study.
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Figure 2. Locations of the 12 weather stations.
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Table 1. Twelve weather stations selected in this study.

No. Weather station Longitude Latitude Abbreviation

001 Windsor Airport 82.96◦W 42.28◦N WDA
002 London Int’l Airport 81.15◦W 43.03◦N LIA
003 Toronto Lester B. Pearson Int’l Airport 79.63◦W 43.68◦N TLA
004 Toronto City Center (Island Airport) 79.40◦W 43.63◦N TCC
005 Ottawa Macdonald-Cartier Int’l Airport 75.67◦W 45.32◦N OMA
006 Wiarton Airport 81.11◦W 44.75◦N WTA
007 North Bay Airport 79.42◦W 46.36◦N NBA
008 Sault Ste Marie Airport 84.51◦W 46.48◦N SSA
009 Sioux Lookout Airport 91.90◦W 50.12◦N SLA
010 Timmins Victor Power Airport 81.38◦W 48.57◦N TVA
011 Big Trout Lake 89.87◦W 53.83◦N BTL
012 Moosonee UA 80.65◦W 51.27◦N MUA

Table 2. List of NARR variables selected as predictors for Tmean and Precip.

NARR variable Unit Tmean Precip NARR variable Unit Tmean Precip

APCPsfc3h kg m−2 –
√

TMP30m K
√ √

HGT500 gpm
√

– UGRD500 m s−1 √
–

HGT700 gpm
√

– UGRD700 m s−1 – –
HGT850 gpm

√
– UGRD850 m s−1 – –

HGT1000 gpm –
√

UGRD1000 m s−1 –
√

PRESsfc Pa –
√

UGRD10m m s−1 –
PRES2m Pa

√ √
UGRD30m m s−1 –

√
PRES10m Pa

√ √
VGRD500 m s−1 –

√
PRES30m Pa –

√
VGRD700 m s−1 –

√
RH2m %

√ √
VGRD850 m s−1 –

√
SPFH500 kg kg−1 √

– VGRD1000 m s−1 –
√

SPFH700 kg kg−1 – – VGRD10m m s−1 √ √
SPFH850 kg kg−1 – – VGRD30m m s−1 √ √
SPFH1000 kg kg−1 √ √

VORT500 s−1 – –
SPFH2m kg kg−1 √

– VORT700 s−1 √ √
SPFH10m kg kg−1 √

– VORT850 s−1 –
√

SPFH30m kg kg−1 √
– VORT1000 s−1 √ √

TMP500 K
√ √

VORT10m s−1 √ √
TMP700 K

√
– VORT30m s−1 √ √

TMP850 K
√ √

VVEL500 Pa s−1 –
√

TMP1000 K
√ √

VVEL700 Pa s−1 –
√

TMPsfc K
√ √

VVEL850 Pa s−1 –
√

TMP2m K
√ √

VVEL1000 Pa s−1 – –
TMP10m K

√ √

‘
√

’ denotes that the indicated NARR variable was selected for predicting Tmean or
Precip. The vorticity variables (i.e. VORT500, VORT700, VORT800, VORT1000,
VORT10m, and VORT30m) are not direct outputs from the NARR dataset, but
are calculated from eastward and northward wind components (Rhines, 1979).
APCPsfc3h = surface total 3 h precipitation; HGTxxx = geopotential height at
xxx hPa; PRESxx = pressure at xx m; RH = relative humidity; SPFHxx = specific
humidity; TMPxxx = temperature; UGRDxxx = eastward wind component;
VGRDxx = northward wind component; VORTxxx = vorticity; VVELxxx =
vertical pressure velocity.

been mostly focused on the application of a single technique
(either dynamical or statistical downscaling) for climate change
impact studies. One interesting question to be answered is whether
or not the downscaled projections can be improved by coupling
these two techniques into a general framework, instead of using
either of them separately, and if so, by how much. Recently, a few
studies have attempted to investigate the potential improvements
through coupled dynamical–statistical or statistical–dynamical
approaches (Hellström and Chen, 2003; Diez et al., 2005; Chen
et al., 2012), and it was reported that the coupled approaches can
improve the downscaled results to varying degrees.

Therefore, this study will focus on developing a dynam-
ical–statistical downscaling approach by coupling a regional
modeling system, Providing REgional Climates for Impacts Stud-
ies (PRECIS; Jones, 2004), and a statistical downscaling method,
Stepwise Cluster Analysis Downscaling (SCADS; Wang et al.,
2013), to construct high-resolution climate projections for the

province of Ontario, Canada. We first project the future cli-
mate of Ontario using the PRECIS model at its highest spatial
resolution of 25 km. The SCADS model is then developed and
validated at grid-point scale with a finer resolution of 10 km.
We will show in the validation results that the SCADS demon-
strates good performance in downscaling temperature and poor
but acceptable performance in precipitation. We then apply the
validated SCADS model to further downscale the projections
generated by the PRECIS model. Finally, we will analyze the
temporal trends and changes in the spatial patterns of both tem-
perature and precipitation based on the high-resolution climate
projections.

2. Data and methods

A coupled dynamical–statistical downscaling approach, as shown
in Figure 1, was developed in this study to generate high-resolution
climate projections. We first employed the well-known regional
climate model PRECIS, which was developed at the UK Met Office
Hadley Centre, to develop fine-scale physically based climate
projections over the province of Ontario, Canada, by adding
regionalized climate physics to the large-scale outputs from
the HadCM3 modelling system under the SRES A1B emission
scenario. The PRECIS model can be applied easily to any area of
the globe to generate detailed climate change projections, with
the provision of a simple user interface and a visualization and
data-processing package (Jones, 2004; Wilson et al., 2011). The
PRECIS is able to run at two different horizontal resolutions:
0.44 × 0.44◦ (approximately 50 × 50 km2) and 0.22 × 0.22◦
(approximately 25 × 25 km2), with 19 atmospheric levels in
the vertical using a hybrid coordinate system. In this study, the
PRECIS was run at its highest resolution (i.e. 25 km) from 1950
to 2099 with the purpose of providing full simulations for both
present-day and future climate.

To estimate regional climate details at even higher resolution,
the stepwise cluster analysis downscaling method SCADS,
developed by Wang et al. (2013), was then applied for further
downscaling the 25 km physically based projections from PRECIS
to a finer resolution of 10 km. Differing from the conventional
downscaling methods, for example, the statistical downscaling
model (SDSM; Wilby et al., 2002) and automated statistical
downscaling (ASD; Hessami et al., 2008), the SCADS uses a
cluster tree instead of a regression-based function to represent the
complex relationships between large-scale predictors and local
predictands. The cluster tree is constructed through a series of
cutting and merging operations to a training sample set in a
step-by-step fashion, which usually contains a large number of
leaf nodes. Each leaf node in the cluster tree denotes a sub-cluster
within the sample set, which cannot be further divided or merged
with other sub-clusters. The prediction process for a given set of
predictors is in fact a searching process starting from the top of
the tree and ending at a leaf node, following a flow path guided by
the cutting and merging rules; then the mean value or an interval
bounded by the maximum and minimum values of the sample
set in the leaf node can be used to estimate the corresponding
predictand’s value. The methodology and downscaling process of
SCADS were detailed in the work of Wang et al. (2013).

To develop the SCADS model at grid-point scale, we derived
32 km reanalysis climate data covering the period 1979–2010
from the North American Regional Reanalysis (NARR) dataset
produced by the National Centers for Environmental Prediction
(NCEP). The NARR dataset was developed by using the very
high resolution NCEP Eta Model together with the Regional
Data Assimilation System (RDAS) which assimilated temperature,
wind, precipitation, and many other variables (Mesinger et al.,
2006; Saha et al., 2010). According to recommendations in
the existing literature, we firstly screened out a number of
predictor variables from the NARR dataset for predicting daily
mean temperature and total precipitation (denoted as Tmean
and Precip). For Tmean, the potential predictors may contain
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Figure 3. Validation results for monthly mean temperature at 12 weather stations. The coefficient of determination (R2), ranging from 0 to 1, is calculated as a
quantitative indicator to evaluate the performance of the SCADS model in reproducing observations.

500 hPa geopotential heights, surface air pressure, 850 hPa
temperature, and 1000–500 hPa thickness (Crane and Hewitson,
1998; Huth, 1999; Wilby and Wigley, 2000; Hellstrom et al., 2001;
Chen and Chen, 2003); for Precip, the potential predictors may
include surface air pressure, temperature, humidity, and upper-
air measures of wind speed and direction, vorticity, divergence,
humidity, temperature, and geopotential height (Beckmann and
Adri Buishand, 2002; Salathé, 2003; Zhu et al., 2005; Haylock
et al., 2006). The preliminary predictor set was further refined
based on correlation analyses at 12 weather stations which are
spatially distributed across Ontario (Figure 2 and Table 1). Finally,
we chose different sets of predictors from the NARR datasets for
predicting Tmean and Precip (Table 2).

High-resolution perdictand samples for both Tmean and
Precip were collected from the 10 km gridded climate dataset
(1961–2003) provided by the National Land and Water
Information Service (NLWIS), Agriculture and Agri-Food,
Canada. The NLWIS dataset was interpolated from daily
Environment Canada climate station observations through a thin
plate smoothing spline surface-fitting method as implemented
by ANUSPLIN v4.3 (NLWIS, 2008). Due to the mismatch in
time span, only a subset of the above two datasets covering
the overlap period (i.e. 1979–2003) was extracted for statistical
modelling in this study. In detail, the data for 1979–1993 were
treated as the sample set to train the SCADS model. Based
upon the work of Wang et al. (2013), we fixed the significance
level as 0.05 during the training process because the calibration
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Figure 4. As Figure 3, but for monthly total precipitation.

results were insensitive to different significance levels ranging
from 0.01 to 0.05. Thus a cluster tree reflecting the inherent
relationship between regional coarse-resolution predictors and
local high-resolution predictands can be established for each grid
cell. The remaining ten-year data from 1994 to 2003 were used
for validating the model performance at the 12 weather stations.
Following that, the SCADS model was applied for statistically
downscaling the PRECIS outputs to generate high-resolution
climate projections for Ontario.

To analyze the temporal trends of climate projections generated
from the coupled approach, We first employed the Locally
Weighted Scatterplot Smoothing method (LOWESS; Cleveland,
1979) to smoothly fit the monthly time series of each station. The
LOWESS algorithm is an outlier-resistant method based on local
polynomial fits and thus is robust to reflect the overall trend of the

time series. We then used the seasonal Kendall test (Mann, 1945;
Kendall, 1970; Hirsch et al., 1982) to test whether a significant
trend existed in the time series under a given significance level
(here we set α = 0.05). The significance of the trend is quantified
as the P-value. The Sen’s slope estimator (Sen, 1968) is further
applied to estimate the magnitude of the trend only if it is detected
as significant. Positive values from the slope estimator indicate
increasing trends while negative values represent decreasing
ones.

3. Results

The validation results for monthly mean temperature and
monthly total precipitation at the 12 weather stations are shown
in Figures 3 and 4. The SCADS model demonstrates consistently
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Figure 5. Comparisons of mean temperature and total precipitation for annual and seasonal time-scales at 12 weather stations. (Winter = December of the previous
year, January, and February; spring = March, April, and May; summer = June, July, and August; autumn = September, October, and November).

outstanding performance in terms of reproducing monthly mean
temperature at the 12 weather stations, with the lowest R2

value being as high as 0.982 at the SSA station. However, the
performance of SCADS for precipitation is not as good as that
for temperature. The R2 values for precipitation vary greatly at
the 12 stations and show evident spatial variability. The highest
R2 value is achieved at the SLA station (0.704), while the lowest
one is obtained at the OMA station (0.067). Nevertheless, the
R2 values at most stations are still greater than 0.3 which leads
to an averaged R2 value of 0.375. This indicates the overall
performance of SCADS is acceptable in the downscaling practice
since precipitation is considerably more difficult to model than
temperature due to its high spatial variability and its nonlinear
nature (Maraun et al., 2010). In addition, the performance of
SCADS model is further investigated by comparing box plots of
mean temperature and total precipitation for annual and seasonal
time-scales between the SCADS outputs and the observations
(Figure 5). The central estimates and mass distributions for mean
temperature at all stations are well simulated by the SCADS
model, further affirming its good performance for temperature.
By contrast, the SCADS model shows a relatively poor capability
to reproduce the current observed precipitation for both annual
and seasonal time-scales. Although the SCADS model produces
either higher or lower estimates relative to the observations at
some stations (e.g. higher annual total precipitation at the NBA
station, lower summer precipitation at the OMA station), the
overall spatial patterns of precipitation at the 12 weather stations
are still well captured.

We obtained 10 km high-resolution climate projections for
Ontario by further downscaling the 25 km outputs from PRECIS
with the validated SCDAS model. Trend analyses were then
carried out at the 12 weather stations to help understand how the
future temperature and precipitation over Ontario are likely to
change under the SRES A1B emission scenario. Figure 6 shows

the projected trends of monthly mean temperature at the 12
weather stations. It is quite clear that all stations consistently
present significant warming trends, with all of the P-values less
than 0.001 and the trends ranging from 0.004 to 0.005 ◦C per
month. The projected trends of monthly total precipitation are
shown in Figure 7. Unlike temperature, the trend of precipitation
at each station tells a different story due to its spatial variability.
Even though some stations show similar trends, e.g. the monthly
precipitation at the stations WDA, TLA, OMA, and NBA are
projected to be decreasing by ∼0.008 mm per month, their
temporal patterns vary greatly. Note that the temporal pattern
here is referred to as the range of monthly total precipitation
as well as its fluctuation over time. For example, the projected
monthly total precipitation at WTA mostly ranges between 50
and 300 mm and its fluctuation is likely to decrease to the end
of this century, while the precipitation at NBA mostly varies
between 20 and 100 mm and its fluctuation tends to be increase
with time. Thus, these two stations show different temporal
patterns. As shown in Figure 7, there are no significant trends
detected at SLA, BTL, and MUA, while the remaining stations
show similar decreasing trends with the slope fluctuating between
0.005 and 0.017 mm per month. Furthermore, the time series of
temperature and precipitation for annual and seasonal time-scales
at the 12 weather stations are plotted (Figure 8) to understand
their temporal patterns and trends from the near term to the
end of this century. The plots for annual and seasonal mean
temperature present similar patterns and further confirm the
significant warming trends for all stations, while the plots for
precipitation show different temporal patterns at all stations and
most of the stations reveal to different degrees decreasing trends
in the amount of precipitation.

The high-resolution projections for temperature and precipi-
tation were then divided into three 30-year periods: 2010–2039
(2020s), 2040–2069 (2050s), and 2070–2099 (2080s), to further
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Figure 6. Trends of projected monthly mean temperature at 12 weather stations (Figure 2) from 2010 to 2099. The smoothed lines for the time series are fitted using
the LOWESS method. A non-parametric statistical test, the seasonal Kendall test, is used to determine the significance of a trend in the time series (denoted as P-value),
and Sen’s slope estimator is used to estimate the magnitude of the trend (expressed as ◦C per month).

analyze their near-term and long-term spatial patterns over the
entire province of Ontario. Figure 9 shows the maps of projected
annual mean temperature and total precipitation over Ontario
for the three periods. The maps for temperature reveal an obvi-
ous increasing trend from the 2020s to 2080s across the entire
province. The mean temperature of north Ontario would rise
from (−3 to 0) ◦C in the 2020s to (−1 to 2) ◦C in the 2050s,
and then to as high as (1 to 4) ◦C in the 2080s, while the mean
temperature of south Ontario would jump from (7 to 10) ◦C in
the 2020s to (11 to 14) ◦C in the 2080s. The projected warming
trend is likely to drive the annual mean temperature of Ontario
up to (6 to 8) ◦C by the end of this century. It is interesting that
there are no significant changes in the spatial patterns of precip-
itation from the 2020s to 2080s. However, the spatial variability
of precipitation is clearly reflected in the projected maps. The
highest spots of precipitation are mostly distributed in the west
and southeast regions where the annual total precipitation would
be as high as 2400 mm, while lower precipitation is projected in
the northern area where the annual precipitation would be as low
as 400 mm.

4. Summary and conclusions

Previous studies have showed that the downscaling performance
can be improved through coupled approaches (Chen et al., 2012).
In this study, we further investigated the improved performance
by developing a coupled dynamical–statistical downscaling
approach, which integrates the PRECIS regional model system
and a new statistical method SCADS into a general framework,
to help generate very high resolution climate projections for the

province of Ontario, Canada. By validating the downscaled results
at 12 weather stations across Ontario, we showed that the coupled
approach can reproduce the observed temperature of current
climate very well, while the performance for precipitation was
relatively poor but still acceptable and its spatial patterns were
primarily captured also.

We then applied the coupled approach for generating 10 km
high-resolution climate projections. By analyzing the trends and
spatial patterns of projected temperature and precipitation, we
found that there would be a significant warming trend throughout
this century for the province of Ontario. Such a continuous
increasing trend is likely to raise the mean temperature of
Ontario to (6 to 8) ◦C by the end of this century. Meanwhile, the
projected precipitation at most of the weather stations showed
decreasing trends to varying degrees. The results also disclosed
apparent spatial variability in the amount of precipitation but no
evidence for the changes in the spatial patterns of precipitation
was found.

Overall, the coupled downscaling approach demonstrated good
performance in generating high-resolution climate projections
by combining the advantages of both dynamical and statistical
techniques. However, the major drawback of this approach is
that the effects of systematic errors in the driving fields provided
by GCMs would be transferred into the downscaled projections
via a two-step process (first into RCMs and then into statistical
models). Further research is desirable to investigate the effects
of the transferred errors on the improved performance within a
coupled framework.
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Figure 7. As Figure 6, but for projected monthly total precipitation. The trend here is expressed as mm per month.
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Figure 8. Time series of projected mean temperature and total precipitation for annual and seasonal time-scales at the 12 weather stations.
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(a)
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Figure 9. Maps of projected high-resolution (a–c) annual mean temperature and (d–f) annual total precipitation over Ontario, for three 30-year time periods (a,d)
2020s, (b,e) 2050s, and (c,f) 2080s.
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Salathé EP. 2003. Comparison of various precipitation downscaling methods
for the simulation of streamflow in a rainshadow river basin. Int. J. Climatol.
23: 887–901.

Semenov MA, Barrow EM. 1997. Use of a stochastic weather generator
in the development of climate change scenarios. Clim. Change 35:
397–414.

Sen PK. 1968. Estimates of the regression coefficient based on Kendall’s tau.
J. Am. Stat. Assoc. 63: 1379–1389.

Timbal B, Fernandez E, Li Z. 2009. Generalization of a statistical downscaling
model to provide local climate change projections for Australia. Environ.
Modell. Softw. 24: 341–358.

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K,
Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M,
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